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ABSTRACT

In this paper we present a theory of Singlet Quantum Hall Effect (SQHE). We show
that the Halperin-Haldane SQHE wave function can be written in the form of a product
of a wave function for charged semions in a magnetic field and a wave function for the
Chiral Spin Liquid of neutral spin-é semions. We introduce field-theoretic model in which
the electron operators are factorized in terms of charged spinless semions (holons) and
ncutral spin--} scrnions (spinons). Broken time reversal symmetry and short ranged spin
correlations lead to SU(2),.- Chern-Simons term in Landau-Ginzburg action for SQHE
phase. We construct appropr ate coherent states for SQHE phase and show the existence
of SU(2) valued gauge potercial. This potential appears as a result of “spin rigidity™ of
the ground state agninst any displacements of nodes of wave function from positions of the
particles and reflects the nontrivinl monodromy in the presence of these dicplacenmants,
We argue that topological structure of SU(2),-; Chern-Simons theory unnmbiguonsly

dictates semion statistics of spinons,

PACS No.73.20.Dx; 11.15.-q; 75.10.0m; 74.65. ¢ n
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I. INTRODUCTION.

i) General remarks

It has been assumed from the beginni.ig of the theory of Fractional Quantum Hall Effect
(FQHE), that the magnetic field, which has to be strong encugh to produce the relevant
Landau quantization, leads to large Zceman splitting. Large body of physical theories
of FQHE assumed spins of electrons to be polarized completely (which is equivalent to

consideration of spinless electrons in the lowest Landau level).

It has been pointed out first by Halperin! that this is not always the case. Zeeman
splitting is given by Ez,eman = 9 upg - H. and Larmour energy is E; qrmour = ¢H/hc. The
ratio of these two energies depends on the factor Ez, . ;man/ELarmour = 9° Lr::%- where m* is
the effective mass of electron, and g - is the g-factor. The ratio of m* /m, in the Si/Si0),

structures is quite small m* /in, ~ 0.0%, and g can be as low o 1/4.

We find, thus, that at least in low enough magnetic fields B ~ 1 T, for some materinls
the ratio {-f;l'l::‘:- ~ 0.017 is quite small. Thus it is 0 good approximation in this case

to negleet Zeeman splitting and consider all states in tie Hilbert space of the problem as

doubly degenerate due to spin.

Withir these assumptions one has to consider the spin unpolarized QHE phase, We
will consider helow the ense of spin singlct QHE phase (SQHE).

Fxperimentally there is evidence that spin singlet QHE phases are present at some

filling fnctors, see for exnmple.?

In this nrticle we will consider the Landimn Ginzbarg theory of singlet QHE and how it
is connected with nounbelian, wanely SUCH  for spin S - 172, Chern Simons theory «



a natural generalization of the Chern Simons theory for spin polarized case. We will show
how 1he SU(2) valued gauge potential naturally appears in the cout. xt of spin coherent

states for SQHE 3.

But before considering spin unpolarized casc we wiil summarize briefly the most im-

portant features of the Landau-Ginzburg theory for spin polarized case.

ii) Spin polarized FQHE and Landau Ginzburg theory

Soon after experimental discovery of the Fractional QHE (FQHE)? Laughlin proposed
variational wave function which describes the incompressible electron liquid in 2D in ex-
ternal magnetic field at fractional filling factors, which naturally leads to the “fractional
statistics” of the quasiparticles.d. The holomorphic stiucture of the Laughlin state relies

essentially on the fact that the coordinate space of electron liquid is 2D.

1, .
Vi(r) = [ (si— )™ exp (— i i:ilz) (I.1)

Ory = —— — (1.2)

where m- is anodd integer. The last observation proved to be erucinl for the construction

of the phenomenology of the fractionnl Quantwm Hall Effect (FQHE).

Numely it has been noticed by Girvin and MacDonald . and subsequently by others'f
tlt broken time reversal invarinnee and parity leads to the possibility for pezity nouinvie
ant terms in the Landan-Ginzburg (LG) funetionn] for electrons in FQHE phase, Plysie
of the Laughlin state Eq. (L1) is dietated by the fuet that i this correlated state each

he

clectron ot point 7, is confined with e quanta of maenetic thax -, 250 Effeet of

!



Chern-Simons term in the LG fuuctional of FQHE is to reinforce the constraint, that ¢n-
sily of particles 1a proportional to the local flur vali.: of some gauge ficld, which we will

call the statistical gauvge field , A,:

k .
" * —_— e £ 1)
P -(p'v) = 5o & F (I.3)
With p-scalar classical field associated with the order parameter in FQHE.? The reason
for introducing extra statistical gauge field is to take into account density fluctuations and

associated fluctuations of the phase of the wave function. At the same time the external

magnetic field is essentially constant.

The LG functional has the form:36:7

. : 1 .
L = /(l2rdt @ (100 — e Ao — Ap)p — ml(za,' —eA; - A,-)(,o|2
v k 0 MY I
+ V(p) + Z; -“‘u b Ay € (1.4)
with & = ?—",51,—5.../1,‘ is electromagnetic potential, and V() = —ag? 4 o1 is the potential

which fixes the amplitude of the order parameter . The last term in Lagrangion £ is
Chern Simons terms for the statistical gauge potential Ay, with the group U(1). Variation
of £ over electromagnetic potential leads to the expression for the transverse conduetivity
civen by Eq. (L.2). More detailed analysis of the LG theory for FQHE i the spin polarized

. . BRT
ease enn be tound in 078

Fxamining LG theory of spin polarized ense we can make two general statements o)
The holomorphie structure of the wave funetion and closely related toits presence of strong,
magnetie ficld in the system allows us to write parity and time reversal noninvarinnt teris,
awch as Chern Simous for some statistieal panpe field.

V)



b) This gauge field obeys the constraint that the density s proportional to the fluz .-
this gauge finld, like Eq. (1.3). We will argue below that these two statements are also
true for the case of LG theory of SQHE. The only essential difference comes from the fact
that the gauge group, corresponding to statistical gauge ficld, will be SU(2). Instead of
density operator playing 1.le of the generator of the flux, the spin will be the generator
of the spin gauge field flux. In contrast to the U(1) group S1J(2) Chern-Simons theory is
true topological theory. As a result of quantization of the coefficient in the Chern-Simons
term, we will find that the only fractional statistics of excitations for SU(2) at level k=1

Chern Simons theory will be semion statistics.



II. SPIN SINGLET QUANTUM HALL EFFECT
AND LANDAU-GINZBURG THENKY.

i) Halperin-Haldane Wave Function of SQHE and Slave Semion Decompo-

sition.

In this paragraph we consider the physical properties of the singlet Quantum Hall
Effect states, given by the Halperin-Haldane wave function ! ?:
‘I’m([-'-'?-]- [zn_]) = H(:;" - :.".")m+l(:l7' - .-,-J.‘ )m+l(z?' - .'.'j—)'n

i<j . (71.1)
S DIAEAIEET DA Pl

where the set of coordinates :;-*' =11 N curresponds to the spin T electrons, and

z;.i=1,.....V corresponds to the spin | electrons and m is an even integer. In this case
\I',,.([.':IT" J.[z;"]) satisfies the Fock cyclicity condition. In this state, the eigenvalue of the
total spin operator is S = 0 and the :-compuucnt of the spin also has eigenvalue S: = 0.
This kind of wave functions naturally appears in the consideration of the spin unpolarized

states in the Quantum Hall Effect (QHE) phase.

[n contrast to the spin pelarized states, in this case we need to deseribe the charge
sector of the SQHE phase as well as the spin sector. By inspecting the structure of this
wave function one finds that it has the simple but very important property that the spin
and charge degrees of freedom are factorized. The total wave function \P,,.([:IT"]. [z7]) ean
he written ns n product of the charge wave function \i's,l.)( [:'-+]. [z7]) and spin wave funetion
P2 [:|-+]. [27]). Below we will discuss the properties of the charge and spin wave funetions
separately. At the end we will put them together again by imposing the constraint t' a0t
the positions of the cliarges coincides with those of the spins. This property is stronely
reminiscent of the charge and spin separation present in mocels of Strongly Correlated

Electron systems in the context of theories of high temperature superconduetors!!,



The wave function is f: torized in the following manner *:

Pn([=F) 57D = B[] = DR (=)L [0 (J1.2)

with

i<j . (I1.3)
R DM EAlEE DIt

VO 127 = [I (3 - o) e - ) st - )7 2 (I1.4)
i<j

Why does this decomposition make sense?. The plasma analogy, when applied to ‘Ils-,l,)([:;-"], (=7 1)
shows that this state is described by a one component plasma, in which the particles at

points :;" and z;” have equal charge:
1 - - - -
|‘I‘Sn)([=}+]- [5; ])|2 = exp((2m + 1)(Eln |:|T" - z;-*'l + Zln lz; - z | + Zln |zl-+ - z; )
iJ

i<j i<j . )
-1/2) " 15 R - 172 151
' I3

We regard \IIS,P ( [:,+ J,(z"]) as the wave function for the charge cegrees of freedom.

If we apply the same plasma analogy to the wave function \I'(""’)([::;+ ) [z ]) we get I,

([F) =712 = exp(z:lnlz;-" -7+ Zln|::..‘ -3l = Zln 3t =<7 (I1G)
i<j i<j iJj

and we can casily see that $(2)([z}), [z7]) corresponds to a two-component plasma, where
the effective charge of the particles ¢ is given by the spin projection ¢ = 28, = £1. It i

natural to consider ‘I'("”([:'T"], (77 ]) ns the wave function of the spin degrees of freedom.

We will show below that \Ils,!)([:.f]. [z;7]) can be regarded ns n wave funetion for semions
in an external externnl magnetie field.  From eq (IL3) we conclude that, for any .
‘Il(,,l,)([:f],[:l-—]) deseribes particles with semion statisties: any ex hange of two of themn
leads to o change of phinse of x(m + 1/2) and, if 1 is even, this particles are semion

N



From rhe same considerations it follows that ¥!'=)([11, [27]) represents a two-component
semion gas. The sign of the spin projection s: determines the effeci.ve phase change in
any interchange of two particles g1gam /2. where gy, ¢2 are 1 for spin 7,|. This model

12,11

with two component semions was considered in . In particular, Girvin et al. !l have

pointed out that the state described by the wave function ‘IJ('Z)([:;-"], [277]) is a local spin

singlet due to the plasma screening of any charge.

The decomposition of eq (II.2) can be represented in terms of the slave srmion opera-

tors:
Yo(r) = p(r)e(r). (I1.7)

where v'4(r) is the electron operator, p(r) is a charge e spinless semion operator, & is a spin

1/2 charge-neutral semion operator, ¢ is a spin index, and we assume that [(r),£(7)] = 0.

In principle this decomposition is neither better nor worse than any other slave boson
or slave fermion factorization, like the ones that are commonly used in theories of strongly
correlated systems. The choice of any particular decomposition of the initial electron
operator is purely a matter of convenience. Qur choice is motivated by the simplicity of

the physical picture that we get in the end.

In Mott-Hubbard insulators, the strong correlations force the constraint of single parti-
cle ocenpancy. In the case of the SQHE, the origin of the strong correlations is the drastic
reduction of phase space due to the presence of a strong magnetic field: the kinetic en
ergy is quenched and the interactions dominate. In close analogy with the Mott-Hubbiard
problem, we argue that in the Singlet Quantum Hall Effect the spin and charge degrees
of freedom are separated in the sense of the decomposition of eq (IL7). Here too, a gauee
svinmetry arises as a result of this factorization. Tiis gauge symmetry means that the
relative phase hetween charge and spin states is not a phy sically observable degree of free
dom. The SQHE wave function is a singlet under this gange syounetry, flowever, the

9



decomposition eq (I1.7) requires that the entire spectrum of sta*es must he singlets unsier
this gauge symmetry. Given the close analogy with the Mott-Hubbard problem, we will
refer to this symmetry as the RVDB gauge symmetry. The presence of this RVB gauge sym-
metry gives rise to an RVB gauge field which puts the charge and spin semions together to
form the allowed physical states. Thus, although the wave functions of all the states can
be factorized as a product of a charge and spin wave functions, there is no separtaion of
spin and charge in this system. In consequence, the syste'n has a gap to all excitations and
it is incompressible. The factorized form of the SQHE wave function, Eq (I1.2), appears
to suggest that there may be a gapless nentral spin excitation which would lead to com-
pressibility. Because the RVB gauge charge is coufined, these excitations are not a part of
the physical spectrum. It is important to scress that the incompressibility results entirely

from the charge sector.

Perhaps the simplest way to see this is to consider the wave function of quasiparticle
(qp) in the first quantized representation, as it has been done in 9. for example, for the

qp of spin 1/2 with s. = —1/2 at point z:

Voo (017D = [ = 20)¥m((=F) 057 D) (I18)

i
The form of this wave function indicates that the creation of the qp is equivalent to the
creation of the extra zero at point zg for the wave function of the purticles with the spin
sz = +1/2 projection. By using the plasma analowy it is easy to conclude that this zero is

equivalent to the gp of spin s; = —1/2 with charge « = !ﬁulﬂ'

Now we will explicitly show that the wave function of the qp in the SQHE cau he
represented as a composite excitation of nentral spinon with & = 1/2 and of the spinless
holon with charge ¢ = ?#—FT We can rewrite W, as:

\IT(EAS Nl TS | (R R EiE WAL ST S R

] - (11N
§ (IR CARE A Gl CN )
i

10



The first product \I'(::,) = Hi(:?' - :(,)1/2(:1-_ - :0)1/2\I'£,l,)([:1' I.[5i]) is nothing more thei,
the holon excitation in the one component plasn.a, corresponding to the llls,l,)([:;"], [=7 ]
From this follows that the effective charge of the holon is e = m%z/,-_, = ‘ZEITT The
second product lIl(:lf)) = [T :;" —::0)[/2(21-" —:0)‘1/2\1"-2)([2?], [=77]) is the spinon excitation,

corresponding to the extra spin s; = —1/2 excitation, created at point 2.

There is an apparent problem with the identification of the sign of the spin projection
for the excitation \Il(:z)l' By the plasma analogy the fictitious spin 1/2 at point zy has the
same projection as the spinons at points z;, i.e. s; = +1/2. But then, due to the plasma
screening in the two component plasma, the real spinons will screen out this fictitious spin,
thus creating the s; = —1/2 cloud of real spinons, centered at point zy. This is precisely

(2)

the reason why the spin projeciion of the excitation \Il_01 is down.

Once th's confusing point has been clarified, we come to the statement that the spin
1/2 charge e = |2'"—.l_Tr qp can be represented as a product of the spinon and holon yp
created at the same point zq:

1 2
v, =) vl?) (I1.10)

The eq(11.10) is a decomposition in Eq.(I1.7) written in the first quantized representation.

We find that the slave semion decomposition (I1.7) for the SQHE is valid not only in
the ground state but for the qp excitations as well. Clearly the argument given above
can be generalized trivially for the case of 1 p. The fact that we need to put our spinon
and holon on the same place explicitly indicates that these excitations with opposite RVB

charge are confined to form an RVB neutral object, only allowed as the physical state &

Thus we showed that the slave semion decomposition eq.(117) is quite natural way to
distinguish the physies in the charge and spin sector of SQHE. This fae rization ( hut no
aeparation) can be observed for any state in the Hilbert space of SQHE.

ii) Coherent states for SQHE

11



In this section we will introduce culierent srates for SQHE. Ongin- My coloerent states
were introduced by Read'fcr FQHE in the spin puitized ease. The generali ation o0 rlis
construction towards spin unpolarized rase is straightforward. Iu this consrruction we will

use analogy with the coherent states for superconductors.

Suppose we have a system, in which some composite operator. involving few particle
operators acquire the nonzero expectation value. An example of such an operator is a

sups rconducting order parameter

A = (N vV +2) (1I.11)

where v't, is the single particle operator with spin a and momentum E.amll.\' > - is the
ak gle p p P '

wavefunction of si:perconductor with N particles.

Clearly, the two particle operator such as in Eq. (II.11) can not have nonzero expec.
tation value in the state with the fixed number of particles [V >, (.\'ll."':k l.'_';_kl.\') = 1),
hecause this object is not gauge invariant under global U(1) gauge transformations. In
thermodynamie limit we usnally consider the system with fixed chemieal potential and in-
definite number of particles which allows the operator to have a nozero expectation valne,
This kind of states allows us to get nonzero expectation value for the two particle operator.
The phase of the order parameter A has to be wel! defined in superconductor. and takine
itto aeconnt that density operator ng = n_-":'k ek and phase @ oare canonically coujugnted

varinbles W, 2g] = 180k — &), we find that the superposition of states with indetinire

number of particles but with fixed phase are uatural for considering superconductors.

These calierent states

|H s \‘ f\' l,'\." !.\' . TIRR



where 8 is the phase, Jy is <ome weight which is peake: around macroscopical vaine
N =X with viriance AN ~ N2 In tlis basis one easily fitid that the order paramerer

hecomes a classical field:

A = (Bluf, vi;08) = [Aole™ (I1.13)
with the well defined amplitude |A,| and phase 1.

From this transparent example we conclude that if the order parameter as an operator
involves fcw particle operators the appropriate basis for consideration of this phase are

the coherent states which are coherent superposition of states with different number of

particles.

Application of coherent states for construction of the LG theory of polarized FQHE
has been done by N. Read,’ see also.!? Here we will follow these ideas to construct the

coherent states for spin unpolarized QHE.

Define states |V, V. > as:

Ve N2 > = Ut [F] 7D ([1.14)

where Vi is the number of particles with up(down) spin. Introduce the coherent states:

BB > = Y vy ooV N (I1.15
Vg

where dy 4 are some weights with (Vi) - ¥, and some varianee, ANV ~ A SIY
state ix with undefined S; and undefined uumber of pattieles. The following composire

aperntor ncequires the nonzero expeetation value in the (B 6_ - state 1,

Aty n,-:(.nl"."'"|_;l""(:) IR

14



(04.0_] Ap| B4 02-) = const (11.16h)

where U4 (z2) is the flux operator, which produce: a node in the wave funetion |84.0_ >:

Us(z) = H(:—:I-*) (II1.17)

And state |64.0- > is simply the condensate of the composite operators:

’rr . N ) Nooo
646>~ Y 3y By \/ d? o /\+(2+)) (/d‘:‘ Ao (== )) iVele |0 >

Ny .

(I1.18)

Eqs. (I1.16)-(IL.18) are just the mathematical expression of the physically transparent
fact that in the Halperin-Haldane state the clectrons of spin up and down are confined
with the zeros of the wave function. For example each electron of spin up is confined with
the tm41) st power of zero in the wave function for all other spin up electrons and m-st

power for electrons of spin down.

Asx we are mainly concerned with spin dynamices of SQHE, we cousider coherent states
and the appropriate order parameter for the spin wave funetion L"(z)([:?’].[:,-']) in K.
(114). It hns been nrgued! that this wave function deseribes the spin 1/2 Chiral Spin
Lignid (CSL) state. It follows from this that the spin dynnmies of SQHE and spin dynamice.
of CSL phase are elosely related. However there is one prineipnl difference hetween <pin
exeitationy allowed in SQHE and CSL: the only spin exeitations allowed in the hulk of
SQHE are guped spin S=1 spin waves, wlule there are spin 1/2 spinons in the CSL stare
This difference comes from the fact that spinons in the bulk of SQHE smuple are contine!

hesanse of nnnliticity of the wave funetion, as v wmentioned enrlier,

The composite operntors which condense in the CSL stare are



AGSE:) = wFe) UG eD (11.19)

Coherent stutes natural for CSL are given by Eq. (I 18) with obvious substitution

Ae — AGSE

The composite operator /\gbl‘ describes the condeusation of the Aux +£x on the parti-
cles with spin S. = . HaJ flux condensation implies that semion statistics of excitations
should be expected in this state, and indeed as it is known that spinons are fractional

statistics excitations in this state !

Using these facts we are now ready to construct the LG theory of SQHE phase.

iii) SU(2)r=) Chern Simons Theory as n LG Functionel for Singlet QHE.

Below we will consider only spin aspect of the LG theory of SQHE, and thus only the
neutral exeitations will be considered. Beenuse of decomposition Eq. (11.2), the charge

sector enn be treated nnalogousiyv to the derivation of LG theory for spin polarized FQHE.

Due to the charge-spin factorization in the Halperin-Haldane state, we will use com

posite operator factorization

.( : ) . Al"lur!’r( :) (11.2”)

with obvious form for AT 704y which is independent on spin indexes, and annlogonsdy

for coherept states:

|H0 IH |H0 -" "n’n,u i”. -" -l"ll“'l’r "I .'l !
Obviously the operator, tele.ant for span dynannes i A5 0 ) and the wavefinetion cou
tanine, all wformation about spin contipnrations of elections vy 0 s defitied



- AYYY
1646 >spin = z In, N (A
Ng,No

. . \ Ve . N
x (/¢F:+ AGHE (24 (/d2:_ A(_b[‘(:)) 10> (I1.22)

with the same notations used as was used in the definition of |84,6- > Eq. (11.15) In
what follows we will drop the “"CSL" frum *he spin composite operutor I\g:'SL( Y aud “spin”

from the spin part of the wavefundction 1046_ > ;).

Crucial object in deriving the LG functioaal is the gauge potentinl, which appears as

a result of displacement of zero of the wavefunction ¢ """"([:.T"]. [2;7]) from the position of

cleetron to which this zero is confined. Namely, cousider the following operator:

VERIEN | CHOL#aa € (11.23)

pl
where g = £, ond ot z = 2 this operntor s just the Au(2). diseussed above. Below we

will nssume that operntors A (=, ') nre normalized by the factor

Nyo= (8.6 l'[“,l"ll,/2“""(:)|0+.0_)_l what will be taken into necount in the ex
puusion of the camposite operntor. The displacement 2z 2 between the point ot which
the porticle was erented and the point at which the zeros of wave funetion are loented may
lened to nontrivinl monodromy properties of the wave function in the presenee of suel di
pacements, Physienlly this nontrivinl monodromy of partiecle wave funetion nround elosed
contour C, enclosing such displacements, leads 1o n frasteation of the wavefunetion. Thi.
in turn lends to the inerense of energy. The system prefers the ground state in which the
seros of wnvefunetion nre contined ta the positions of the partieles.? The gnge potential
which reflects nontrivinl monodromy of probe particle in the nonhomoreneons ease in spin
polatized FOQUE, see Feo (LD, appenrs untarally i this annlysis



The difference between polarized FQHE and SQHE i~ that in 3QME phi-c pure spin
distortions can produce gauge potential, even if the charge Auc nations do not lead o any
U(1) gauge potential as in Eq. (1.3). This concept of binding zcios of spin wave funetion
with the particles was called “spin rigidity™ in the case of CSL to stress the topological

effect caused by displacements between zeros of wave function and positions of particles.!?

Here we shall see that the same “spin rigidity” of the SQHE ground state in the spin
sector leads to SU(2) valued gauge potential Az = i AL -af"'d, a"" ; are Pauli matrices. This
ginze potential measures the nontriviality of monodromy of spin wave function. Define

d; = A, + i.-iy and:

Q!
A = A f .',i—_'ﬂ/\f.’(:’.:) Av (2 2)) (11.24)

-

where \ is the coefficent to be defined later. Taking into account Eq. (11.23), and approx-

imating (/\l*"/\,,) = (= 1) (2 op(2)) we find:

i 0:4L = ,\rr(l,-"l',*(:)(,"“(:)) (11.25)

or in terms of spin components:

i 0:AL = A (S5 (11.26)

As we mentioned, the ground state expeetution value of spin operator is zero. Any spin
excitation, however, produee the gnuge potential A L For eximple, fos spin 1/2 quasihole
in Halperin-Haldoue state (87) 0 Atz =) will leadd to o gange potential of & point hne

OUrde,;



17.27)

The value of A is fixed by the requirement to he consistent with semion statisties of spin
1/2 excitations (neglecting the phase coming from charge sector) and gives A=1. From
Eq. 1 [1.24) it follows that in SQHE phase the displacement between zeros of wave function
and positions of particles leads to a nonlocal effect, revealed by effective gauge potential.
Assuming tha. scalar interactions in the system are short ranged, we can write down the

local effective LG action whose variation leads to constraint Eq. (11.24 — I11.26):

: , 1 . .
S = /(lz.rdt Aj (oY — AMY) Ay + = Trd; 9 Ayt

1

—_ |'2
2A]

+ V(ATA) + |0 917" = AMYA, (11.28)

Where we also take into account special gradients of the order parnmeter Ay(z) defined
in Eq. (1Li9); potentinl V(A*TA) provides the fixed amplitude of the order parameter,
The most nontrivinl part of the effective LG action is the Tr.-i,-(')j Ap e torm, which is

recognized as a gradient part of the SU(2), - Chern-Simons term:

L = /:l'z.z'df Y TridA; 0; Ap + 2/3 A; 4 .'h.)f"" (11.29y

at k=1 for our case (the subseript k in SU(2), means precisely the coctlicient in front of

C'hern-Sinons term).

It is rensonable to nrgue that becnnse of loeal spin correlations in SQHE state the
true SU2) rotntional invarinnee should be observed, Althongh in Seetion i) identify the
spin b oparticles with flnx i state \l’('“')([.:,' I [z, 1) this identifiention requires the pnn
quantizntion nxis to be fixed explicitly. This s the “abelinn™ way to mcorporate s
quantum numbers of eleetrons into the wave funetion.

|



In this precedure the single particle states are deseribed in terms of the spin projection
on the z-axis, and for simplicity, this axis is assumed to be in the same ¢irection everywhere.
Thus, we deal only with the U(1) diagona! subgroup of the full SU{2) spin group. Also, the
plasma analogy for \Il("'))([:?j, [z;°]) leads to the correspondence with the two component
plasma with effective charge ¢ = +¢g for spinT and ¢ = —gn for spin | particles. This
analogy suggests that we should attach different fluxes to particles with opposite spin and

deal with them in much the same way as we did with the charge sector in section I1.

However, there is a problem with this approach. So far there is no spin anisotropy in
this state since we have neglected the Zeeman term in the consideration of the SQHE 9.
The “abelian” approach breaks the SU(2) spin symmetry from the outset. Its recovery is
a highly non-trivial matter. In principle one has to be able to formulate the SQHE wave
function while keeping the full SU(2) invariance and to allow for a quantization axis that is
varving in space. Girvin et al. ' have pointed out that \P(")')([:l-'"], (7)) leads to n partition
function for a two-component plasma and that any extra charge = spiu is screened. The
sereening in the two component anyon gas, in the context of the spin coupled to n gnuge
ficld, was found in reference 120 Thus, what is needed is o procedure to attach different
fluxes to particles with T and | spins in o manner that is compatible with the SU(2)
spin symmetry. Fortunately such an appronch does exist: it is the non-abelinn SU(2) €'S
theory, A non-abelinn €S term, mueh like the abelinn CS theory used in the deseription
of the spin polarized QHE #6718 nttnches fluxes to particles. But, unlike the “abelinn”
appronch mentioned nbove, the non-abelinn CS theory is invarinnt under SU2)Y rotation:
of the spin. Furthermore, this invarinnee is local and the theory is nogauge theory, It tarne
ant that the CS theory represents the only possible loeal way to attach particles to SU?

fiuxes. Below we will follow this second way in considering the spin wave funetion,

Consider the set of coordinntes [‘,. [z, 1 of o set of some spinors with the spin ap

cotnponents, loented at pointsfz '] and spin down nt points [ |0 The points [ 1],

'
! vt



will be regarded as the positions of sources of an SU(2) field A, taken in the fundamental
representation. It corresponds to the spin 1/2 of the (lectrons , constituing the QHE state.
The Lagrangian Lgnin of the spin sector is given by Eq.(I1.28) with the full non-abelian

Chern-Simons term.

The points at which the excitations aic located are the the scarces for the gauge field

. As it can be seen from the variation of the Lagrangian (I11.28) over Af:

5£spin + _a k
T = AT A+IE =0 (I1.30)

The strength of the gauge field is given by F7, = 9z 4} — 9, A3 + [dr, 4y]®. Let us assume
that the particles have a mass m. The path-integral representation of a matrix element of
the evolution operator is given as a sum over all possible particle trajectories and gauge
field histories. The constraint of Eq (I1.30) requires that each term in this amplitude
should contain a factor representing a path-ordered exponential of the SU(2) gauge field
along each particle trajectory. These pith-ordered exponentials are usually referred to as
Wilson lines. In first quantization, the time evolution during the time interval t of the
heavy sources will be given by the amplitude:

WL = S e A 2 e T 20

Paths . (1131
. . - = ik 4 e . -
/ D[A] i " ',(::+‘ :'_+ )”j( :'l,_ 3] )rlL fd rdtL-y W [:'ﬂ-]‘ [:i 1.0)
where ="+ 2= are the set of finnl positions of the sources, and

i I:_" .‘hl’l" .

H','(::.:,):-‘[l’r g (113

are Wilson lines evalunted on the 3 dimensional paths from 3 to =5 We will consider the
21D dise geometry pierced by the Wilson lines, The coordinate spoee is 1) < R, where R s

the time. The integeal in the exponent in W20 5y is the quasiclassien] expression for the

spin. enrrent gnige potentind conpling | ."'I"I);:(II".I'(", assuing that o a® i%;ﬂh( roorttn
and 0 #) parmmetyizes the quavaclassical path of the panticle,

20



The CS action for the gauge ficld leads to the effective sension statisties of Wilson line-
Let us fix two Wilson lines, corresponding. for example to particles at 2 and pp. And ler
us consider two processes whichi represent evolutions with the samne finnl state and only
differ by the presence of an extra knot in their histories given by H"(z:-'*', :l+ ) H-'(:'I_ VI -
Thien the final amplitudes {’([::-+], [::-'—]) will gain different phases ia these processes. One

can find 17, that the amplitudes are related by

\pknotted( [::'+]~ {::-]) = (’Xp(i‘) )‘purll'nnltcd([::'+]' [::_]) (11'33)

where v is the conformal weight of the primary field for the SU(2) level & group, and 1s

given by

47mj() + 1)
=2V 7T '/ I1.34
k+2 (10.94)
In our case, k = 1.5 = %. the phase difference between two configurations is m which

corresponds to a phase of /2 per particle If we assume that the evolution between two
configurations is adiabatic, the kinetic cuergy does not modify the value of g becanse it
is quadratic in time derivative. The only contribution to the phase comes from the €S

action and it leads to the semion statisties of the exeitations | exhibited in the spin wive

function \[’(2)([3?‘]-[:;.]) .

[1. CONCLUSION

[u this paper the theory of SQHE phase was presented. We considerved the charge <pin
factorization in the Halperin Holdane state and argne that the Halperin Haldane stare
virtntional wave function can be written o the form of product of two wave funetion .
one, ‘l's,ll)( [:,-' I [z ]) rorvespowds to charged spinless semions in external magnetie field and
the other pin wave funetion ‘l'”"(['.,‘ L, D the wave Tunetion of wpins /2 neatre

2



semions. Because all states in the Hilbert space of the problem can '.¢ represented as a
direct product of charge and si:in contribution we argue that LG theory of SQHE piliase
can be written as the theory for composite order parameter A4 (z) from Eq. (I1.20). In
our derivation of the LG theory we concentrate on the spin sector. The parts of LG action

for charge sector can be derived, following the derivation of LG theory for spin polarized

FQHE.

We construct the coherent states for SQHE phase which are analogous to the coherent
states for polarized FQHE phase, and describe the state with undefined spin projection

and undefined number of particles.

Because of the “spin rigidity” of SQHE state, the modes of spin wave function ¥(2)( [:;*'] B
are confined to the positions of the particles. Moreover we find that anv displacements
of these modes from positions of the particles, described by nonlocal composite operator
Al 2) = zjv;’(z")nﬂ, [’;/2"'“'(:) leads to nontrivial monodromy of the wave function
around closed contour, enclosing such a displacement. The natural measurement of ths
monodromy of spin wave function is the SU(2) valued gauge potential 4; with the flux
F,':y proportional to the noncompensated spin density (S') Although we were not able
to reproduce full SU(2) invariant topological term, we argue that because of local SU(2)
invariance in SQHE phase, the spin part of LG action contains SU(2).=; Chern Simons
term. We also find that the topological structure of the Chern-Simons theory leads “mam-
biguously to semion statistics of excitations in the spin sector of SQHE. However, these
excitntions are not physically relevant, because in the bulk of SQHE phase spinons are
confined with holons in order to have trivial monodromy for Halperin-Haldane wave fune
tion, written in terms of electron coordinntes, [t has been nrgued in!®, 1hat SU2)
Kae-Moody nlgebia, which deseribe the edge of SQHE snmple leads to the neatral spinon
exeitations ns part of the Hilbert spoaee of the edge,

This consideration of S=1/2 SQHE state is also usefnl in revenling the conne etiog

(1)



between conformed field thcory and different phases of FQHI 133 For example usine these
results we can show that i) there is a S=1 Singlet QHE viriational wave function, ii)
this wave function is given by conformal block of SU(2)r~9 Chern-Simons theory. iii) it

supports ncnabelian excitations with fractional charge and spin 1/2.19
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